Reg. No. : \square

Question Paper Code : X60496

B.E./B.Tech. DEGREE EXAMINATIONS, NOVEMBER/DECEMBER 2020

Third Semester
Electrical and Electronics Engineering
EE2204/EE36/080300003/10133EE306-DATA STRUCTURES AND ALGORITHMS
(Common to Electronics and Instrumentation Engineering/Instrumentation and

> Control Engineering)
(Regulations 2008/2010)
(Also common to PTEE2204 - Data Structures and Algorithms for B.E. (Part - Time)
Second Semester/Third Semester - EEE - Regulations 2009)
Time : Three Hours
Maximum : 100 Marks

Answer ALL questions

PART - A

1. What is a circular queue?
2. List the applications of stacks.
3. Draw the expression tree for $(a+b * c)+\left(\left(d^{*} e+f\right)^{*} g\right)$.
4. Write the pseudo code to insert an element at the end of the linked list.
5. Define a hash function.
6. State the need for indexing.
7. Define in-degree and out degree of a graph.
8. What is meant by strongly connected and weekly connected in a graph ?
9. For what type of problems greedy algorithms are best suited ?
10. State how dynamic programming solves complex problems.
ii) What is a stack? Write down the procedure for implementing various stack operations.
(OR)
b) Write a function to add two polynomials. Do not destroy the input. Use a linked list implementation. If the polynomials have M and N terms respectively, what is the time complexity of your program?
11. a) i) Discuss how a node could be inserted in a binary tree.
ii) Write a procedure in C to find the $\mathrm{K}^{\text {th }}$ element in binary tree.
(OR)
b) i) Derive the expression tree for the expression $(a+b+c)+\left(\left(d^{*} e+f\right)^{*} g\right)$. Explain the construction procedure for the above.
ii) Write routines to implement the basic binary search tree operations.
12. a) Develop an algorithm for constructing an AVL tree. Include routines for insertion and deletion. Illustrate the same with an example.
(OR)
b) Explain closed hashing with an example.
13. a) i) Define Graph. Briefly explain the graph traversal algorithms with an example.
ii) Find the shortest path from node 1 to 7 using shortest path algorithm.

(OR)
b) With an example, explain Kruskal's algorithm for finding minimum spanning tree.
14. a) Write an algorithm for basic operations on stack. Formulate an algorithm to check for balanced parenthesis.
(OR)
b) What is a max heap ? Explain the steps involved in inserting elements into a heap with an example. Write an algorithm to insert an element into max heap.
